TYPE OF CELL SEPARATOR, FENWAL AMICUS VS FRESENIUS COM TEC, MAY INFLUENCE THE CORPUSCULAR ELEMENTS VALUE OF THE DONOR’S BLOOD

Elvedin Landzo1, Izeta Aganovic-Musinovic2, Danijel Bevanda3, Ante Bogut1, Mateo Bevanda4, Daniela Bevanda Glibo3 & Danijel Pravdi3

1Institute of Transfusion Medicine F B&H, Sarajevo, Bosnia and Herzegovina
2Immunology Department, Medical Faculty of University in Sarajevo, Sarajevo, Bosnia and Herzegovina
3Department of Internal Medicine, University Hospital Mostar, Mostar, Bosnia and Herzegovina
4Center for Urgent Medicine, University Hospital Mostar, Mostar, Bosnia and Herzegovina

received: 5.7.2019 revised: 27.8.2019 accepted: 22.10.2019

SUMMARY

Introduction: During the plateletpheresis procedure the number of thrombocytes in the donor’s blood significantly decreases, and the levels of the hematocrit (HCT), hemoglobin (Hgb), and leukocyte (WBC) diminish as well. Influence of the cell separator is one of the factors that affects the levels of HCT, Hgb, and WBC. In this study, the goal was to determine the value difference of HCT, Hgb, WBC, and platelets after the platelet pheresis process between performance on Fenwal AMICUS and on Fresenius Com Tec.

Donors and methods: The criteria for participation: male in the age range of 25-45. We have formed two groups: for both groups - 180 separations were performed on 60 participants were the values of hematocrits, concentration of hemoglobin and number of leukocytes were established before and after separation using the double-needle continuous flow cell separation (DN-CFCS) on two different devices, Fenwal AMICUS device and the Fresenius Com Tec device. To confirm the statistical differences we have used Student t-test for independent or dependent samples, as well as Mann-Whitney U test as non-parametric alternative. To compare differences between the values of four parameters (P1-P2) from two groups (using two devices - Fenwal AMICUS and Fresenius Com Tec) The possibility of errors were accepted for \(\alpha \leq 0.05 \), and the difference between groups as statistical relevant were accepted for \(p \leq 0.05 \).

Results: Statistically significant lower values were noted for all researched parameters after separation on both devices. The statistically significant average values for Hct, Hgb and WBC obtained between two devices, were less than 0.05 (p=0.05).

For the platelets (Pit) there was no statistical significant difference (p>0.05 - \(\alpha=0.05 \)), between average level obtained using either Fenwal AMICUS or Frazenius Com Tec.

Conclusion: The type of cell separator had the influence on the decrease value of the observed parameters.

Key words: Comparison Fenwal AMICUS and Frazenius Com Tec - plateletpheresis - donor hematological value

INTRODUCTION

In transfusion medicine, collecting platelets using apheresis is considered one of the biggest progresses. It permits an adequate response to the fast increasing need for blood components. New technologies have permitted a frequent donation of platelets in contrast to whole blood, while the donors still have joy of helping someone or even saving someone’s life.

The purpose of the plateletpheresis procedure is to obtain platelets concentrate for treating patients in need. During the procedure the number of thrombocytes in the donor’s blood significantly decreases, and the levels of the other components of blood as Hct, Hgb and WBC diminish as well.

The undeniable fact is that the platelet count after the separation drastically drops because the procedure was performed to extract a certain amount of them. However, the values of other parameters such as hematocrit, hemoglobin, and leukocytes are reduced in varying percentages, as stated by numerous authors (Benjamin 1999, Bueno 2005, Edwin 2004, Rajendra 2009, Veihola 2006, Fontana 2004, Fontana 2011, Hans-Gert 2013, Al-Raha 2012) health is protected in a way that we have never processed more than one total blood volume (TBV) per procedure, and we have made a sufficient time interval between procedures.

Our goal was to determine the value difference of HCT, Hgb, WBC, and platelets after the plateletpheresis between performance on Fenwal AMICUS and on Fresenius Com Tec. cell separator.

DONORS AND METHODS

The results of platelet cytopheresis obtained at the Institute of Transfusion Medicine of F B&H, Sarajevo, Bosnia and Herzegovina, were used in this study.

As sample were used all those donors on the list of the Institute of Transfusion Medicine that had been at least three times blood donors and that had accepted to
participate in this procedure. Out of the register of blood donors of the Institute of Transfusion Medicine using the method of random selection-lottery, the blood donors were chosen to be platelet donors, depending on the needed certain blood groups, the ability to reach the facility in adequate time, the resident distance from the Institute, the time range of previous donations, the current state of health, etc. It fact, we have used this random selection for the samples of respondents from list of donors that all previously agreed to be platelets donors as well.

Recommendations of the Europe Council were fulfilled as well as the domestic legislation. Before the procedure started, the details of the method and the eventual negative side effects during the procedure were explained to the donors. All the donors that participated in the platelet cytopheresis procedure gave their written consent that the obtained results can be used in a scientific research and published with the protection of the donor's identity.

The criteria for participation in the study were as follows: fulfill standard transfusiologic criteria, males between age of 25-45; male donors which have had several platelet apheresis using DN procedures on Fenwal AMICUS device and Fresenius Com Tec. device, using the first three separations and donor’s samples with a number of platelet prior procedure above 150x10^9/L and less than 450x10^9/L; with expected number of leukocytes 4-10 K/µL. After the procedure were measured: white blood cells – Yield and leukocytes of the donor, before and after procedure, rate of 1.25mg/kg and ACD ratio of 1:10.

To confirm the statistical difference we used Student t-test for independent or dependent samples. The possibility of errors were accepted for α=0.05, and the difference between groups were accepted as statistical relevant for p<0.05. P values that could not be showed with a three decimals digits, are shown as p<0.001. The parameters that could be changed but are given as defaults before procedure, were: extra volume of physiological solution that was returned to the donor at the end of the procedure in the amount of 60 mL; maximum blood flow was 70 mL/min, limit of the input pressure of -250 mmHg, limit of the return pressure of – 450 mmHg, pressure on the donors arm above the venepuncture at the manometer of 50 mmHg, citrate rate of 1.25mg/kg and ACD ratio of 1:10.

The values of platelets, hematocrits, hemoglobin and leukocytes of the donor, before and after procedure, were determined using Electronic counter Cell Dyne 3200 (Abbot Laboratories, IL, USA). Samples for these parameters were taken with eprouvettes (vacutainer with EDTA 5.4 mg/ 3 ml blood) from the vein that will not be used during the procedure. The blood sample after procedure was taken from the entering vein after the end of the procedure and after we have already taken 5ccm^3 blood in the eprouvette.

Statistical analysis

The data obtained (HCT, WBC, PLT, Hgb) were statistically processed in the following way: The continuous variables which distributions did not have a deviation from the normal were presented as arithmetic average and standard deviation, while as average value and measure of dispersion for continuous variable which distributions did not have a deviation from the normal were presented as arithmetic average and standard deviation. To confirm the statistical difference we used Student t-test for independent or dependent samples. The possibility of errors were accepted for α=0.05, and the difference between groups were accepted as statistical relevant for p<0.05. P values that could not be showed with a three decimals digits, are shown as p<0.001. The results obtained this way are presented for two groups: A results before procedure (P1) and results after procedure (P2) and B presents compared results between procedures (Fenwal AMICUS: Fresenius Com Tec). For the statistical analysis of the obtained results was used program SPSS for Windows (13.0, SPSS Inc., Chicago, Illinois, and SAD) and Microsoft Excel (Office 2007, Microsoft Corporation, Redmond, WA, and SAD)
Table 1. Differences of observed values before (P1) and after (P2) separation

<table>
<thead>
<tr>
<th>AparProc</th>
<th>AVG</th>
<th>SD</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1HCT</td>
<td>45.38</td>
<td>2.69</td>
<td>10.897</td>
<td><0.0005</td>
</tr>
<tr>
<td>P2HCT</td>
<td>43.69</td>
<td>2.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1Hgb</td>
<td>15.44</td>
<td>1.00</td>
<td>13.225</td>
<td><0.0005</td>
</tr>
<tr>
<td>P2Hgb</td>
<td>14.57</td>
<td>1.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1WBC</td>
<td>7.50</td>
<td>1.98</td>
<td>15.949</td>
<td><0.0005</td>
</tr>
<tr>
<td>P2WBC</td>
<td>5.92</td>
<td>1.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1PLT</td>
<td>282.27</td>
<td>54.60</td>
<td>33.485</td>
<td><0.0005</td>
</tr>
<tr>
<td>P2PLT</td>
<td>202.83</td>
<td>43.04</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Differences for the observed values between AMICUS and Fresenius Com Tec

<table>
<thead>
<tr>
<th>AparProc</th>
<th>AMICUS</th>
<th>Fresenius Com Tec</th>
<th>t-test</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1HCT</td>
<td>45.37±2.68</td>
<td>45.03±2.74</td>
<td>1.21</td>
<td>0.229</td>
</tr>
<tr>
<td>P1Hgb</td>
<td>15.44±1.00</td>
<td>15.45±0.99</td>
<td>-0.14</td>
<td>0.889</td>
</tr>
<tr>
<td>P1WBC</td>
<td>7.49±1.97</td>
<td>7.84±1.99</td>
<td>-1.64</td>
<td>0.101</td>
</tr>
<tr>
<td>P1PLT</td>
<td>282.27±54.60</td>
<td>279.56±52.27</td>
<td>-0.48</td>
<td>0.631</td>
</tr>
<tr>
<td>P2HCT</td>
<td>43.68±2.57</td>
<td>43.88±2.79</td>
<td>-0.67</td>
<td>0.504</td>
</tr>
<tr>
<td>P2Hgb</td>
<td>14.57±1.12</td>
<td>14.89±0.99</td>
<td>-2.83</td>
<td>0.005</td>
</tr>
<tr>
<td>P2WBC</td>
<td>5.92±1.54</td>
<td>6.34±1.67</td>
<td>-2.48</td>
<td>0.014</td>
</tr>
<tr>
<td>P2PLT</td>
<td>202.83±43.04</td>
<td>200.01±39.83</td>
<td>0.65</td>
<td>0.519</td>
</tr>
</tbody>
</table>

Student t-test; $\chi^2\pm SD$ = Arithmetic mean and standard deviation

RESULTS

The values of hematocrit (HCT), leukocytes (WBC), platelets (PLT) and hemoglobin (Hgb) were presented before (P1) and after separation (P2), as well as the difference of these values and the comparison of the results between the two cell separators. At the initial values, before separation (P1), the parameters (HCT, Hgb, WBC and PLT) had no statistical differences between Group I and Group II (Table 1).

Statistically significant lower values were observed of all researched parameters after donor’s sample separation performed on the Amicus device and donor’s sample separation performed on the Fresenius Com Tec device (Group I and Group II). Table 1).

Statistically significant lower values were observed of all researched parameters after donor’s sample separation performed on the Amicus device and donor’s sample separation performed on the Fresenius Com Tec device (Group I and Group II). We found that the significance level, for the variable: hemoglobin Hgb and leukocytes WBC were less than 0.05 ($p<0.05$), there was a statistical significant difference between the average values for the DN procedure performed on the Fenwal AMICUS device and Fresenius Com Tec device (Table 2).

DISCUSSION

The conclusion that can be drawn from this statistical analysis is that: the both groups had the statistical significant decrease in the value of hematocrit, in the concentration of hemoglobin and in the number of leukocytes and platelets after procedure was completed.

One can conclude that the decrease of the values of the measured parameters after procedure completing can be related to the parameters values that donor had before the procedure. Other authors have obtained similar results that can confirm our results (Hans-Gert 2013, Al-Raha 2012, Altuntasa 2008, Das 2009, Bereta 1998, Chaudhary 2009, Vamvakas 2009).
The comparison of the results between Group I and II for hematocrit, concentration of hemoglobin and number of leukocytes after plateletpheresis performed by the DN-CFCS method on Fenwal AMICUS device and FRESENIUS ComTec device allow us to conclude with following facts: Comparing the parameters of leukocytes and hemoglobin’s, we found a statistical significant difference in the decrease of the parameter’s value after separation, there was a significant decrease change in using Fenwal AMICUS cell separator compared to using FRESENIUS cell separator with the same procedure. The same conclusion got O'Meara et al. 2012.

For the platelets amount values we have found that there are no significant statistical differences. Many authors confirmed the same results when compared cell separators (Fontana 2011, Hans-Gert 2013, Bereta 1998, Chaudhary 2009, Vamvakas 2009, Tendulkar 2009, Patidar 2013, Rosencher 2011).

Regardless of the cell separator, the decrease in the values of hematocrits, the concentration of hemoglobin, the number of leukocytes or the platelets were such that they would endanger the donor health nor the values after procedures were decreased under the lower physiological level.

Das et al. 2009 mentioned that in a certain number of donors there was a decrease, most commonly of hemoglobin or platelets, under the level considered physiological with no clinical manifestations, while some others mentioned severe clinical manifestations (Rosencher et al. 2010). Neither of that was the case in our study.

CONCLUSION

Based on the analyzed data collected during this study we came to several conclusions. A good selection of the donors is the primary precondition for a good but also a safe platelet separation for the donor. In all observed platelet separations, regardless of the cell separator used, there was a decrease of hematocrits values, concentration of hemoglobin, number of leukocytes and platelets of the donor after platectpheresis.

The choice of cell separator had influence on the observed parameters decrease. The cell separator Frese- nius ComTec was more “sparing” for the donors when observing the results of leukocytes and hemoglobin after separation while for the platelets and the hematocrits difference was not observed. If the procedure is performed according to the given instructions and recommendations, and if the cell separators are well taken care of according to the manufacturer recommendations than the health risk for the donor is minimized and there are no clinical consequences side effects.

Plateletcytopheresis will in the future become the main source for platelets concentrations for treating the most serious illness. Platelet concentrations obtained by platelet cytopheresis is the best way to overcome the gap between the need of “rare” blood groups and the possibilities that transfusion departments can offer.

Regardless of technological progress, the control of hematocrits, hemoglobin, leukocytes and platelets of the blood donor must be performed prior separation. In practice, new technologies are accepted and only viewed from their positive effects not taking into account collateral effects, that although not dramatical, can after a while have a cumulative effects and one must take care about it.

Acknowledgements:

Declaration of Ethical Committee: By the Decision of Ethical Committee number 03-1703-14.212.1/14 of 26th of March 2014, the research components were approved and valorized.

Informative consent of each participant of this study was signed.

Conflict of interest : None to declare.

Contribution of individual authors:

Elvedin Landzo: conception and design of the publication, literature searches and analyses, acquisition of data, interpretation of results, writing the first draft participate in drafting the article, execution of tables, approval of the final version;

Izeta Aganovic-Musinovic: statistical analyses, participate in revising it critically for important intellectual content, approval of the final version;

Ante Bogut: participate in revising it critically for important intellectual content, approval of the final version;

Daniel Bevanda: participate in revising it critically for important intellectual content, approval of the final version;

Ivan Vasilj: participate in revising it critically for important intellectual content, approval of the final version;

Daniela Bevanda Glibo: revising the manuscript, approval of the final version;

Ivana Bjelanovic: revising the manuscript, approval of the final version.

References

4. Rajendra Ch, Das SS, Dheeraj K, Shashank O, Sunil V: Donor safety issues in high-dose platelet collection using the latest apheresis systems. The Authors. Journal compilation 2009 LMS Group Ltd

16. Patidar GK, Sharma RR, Marwaha N. Frequency of adverse events in plateletpheresis donors in regional transfusion centre in North India. Transfus Apher Sci 2013; 49:244-8

Correspondence:
Elvedin Landzo, Manager of education division and scientific research work
Institute of Transfusion Medicine F B&H
Cekalusa 86, Sarajevo, Bosnia and Herzegovina
E-mail: drelandzo@gmail.com