ANTIDEPRESSANTS IN USE IN CLINICAL PRACTICE

Mark Agius¹ & Hannah Bonnici²

¹Clare College, University of Cambridge, Cambridge, UK ²Hospital Pharmacy St. James Hospital Malta, Malta

SUMMARY

The object of this paper, rather than producing new information, is to produce a useful vademecum for doctors prescribing antidepressants, with the information useful for their being prescribed. Antidepressants need to be seen as part of a package of treatment for the patient with depression which also includes psychological treatments and social interventions. Here the main Antidepressant groups, including the Selective Serotonin uptake inhibiters, the tricyclics and other classes are described, together with their mode of action, side effects, dosages. Usually antidepressants should be prescribed for six months to treat a patient with depression. The efficacy of anti-depressants is similar between classes, despite their different mechanisms of action. The choice is therefore based on the side-effects to be avoided. There is no one ideal drug capable of exerting its therapeutic effects without any adverse effects. Increasing knowledge of what exactly causes depression will enable researchers not only to create more effective antidepressants rationally but also to understand the limitations of existing drugs.

Key words: antidepressants – depression - psychological therapies - social therapies

* * * * *

Introduction

Depression may be defined as a mood disorder that negatively and persistently affects the way a person feels, thinks and acts. Common signs include low mood, changes in appetite and sleep patterns and loss of interest in activities that were once enjoyable. Treating depression may involve single drugs or combinations of drugs, psychotherapy and electroconvulsive therapy, alongside medical and familial support. The route of treatment chosen is dependent on numerous factors including the type of depression, whether it is acute, chronic or recurrent, past positive responses to treatment, severity of the depression and so on (Azzopardi 2010).

The pathophysiology of depression mainly involves a reduction or functional deficiency of the brain neurotransmitters noradrenaline, serotonin and dopamine. Other factors that may contribute to depression include hormones, changes in circadian rhythm and neuropeptides. This article focuses on the anti-depressants that are available to doctors today (Fekadu 2016).

Classes of Anti-Depressants

Anti-depressants may be divided into the following classes:

Monoamine uptake inhibitors

- Tricyclic Antidepressants (TCAs)
- Tetracyclic Antidepressants
- Selective Serotonin Reuptake Inhibitors (SSRIs)
- Noradrenaline Reuptake Inhibitors (NARIs)
- Serotonin-Noradrenaline Reuptake Inhibitors (SNRIs)
- Noradrenaline Dopamine Reuptake Inhibitors (NRDIs)

Monoamine oxidase (MAO) inhibitors

- Non-selective Monoamine Oxidase Inhibitors
- Selective Monoamine Oxidase Type A inhibitors
- Atypical Anti-Depressants and other classes

Tricyclic and Tetracyclic Anti-Depressants Mechanism of action

Inhibit the neuronal re-uptake of noradrenaline and serotonin, thereby increasing their concentration within the synapses and enhancing neurotransmission. Their efficacy for the two types of neurotransmitter receptors varies and this results in different frequencies and intensities of side effects (BNF 2016).

Table	1A.	Tricyclic	anti-depressants	and	their	dose
ranges	(BNI	F 2016)				

Examples	Adult daily dose range for depression (mg)
Amitriptyline	75-200
Clomipramine	10-250
Desipramine	25-300
Dosulepine	75-225
Doxepine	75-300
Imipramine	75-200
Lofepramine	140-210
Nortriptyline	75-150
Protriptyline	10-60
Trimipramine	50-300
Maprotiline	25-225
Mianserin	30-90

Dosulepine is Considered to be less suitable for prescribing due to its relatively high toxicity in overdose without therapeutic advantages over other tricyclics (NHS Dorset Clinical Commissioning Group).

Lofepramine is Particular in that it is the only tricyclic which is not cardiotoxic in overdose, thus safer albeit less potent than others within the same class (NHS Dorset Clinical Commissioning Group)

Table	1B.	Tetracyclic	anti-depressants	and	their	dose
ranges	(BNF	2016)				

Examples	Adult daily dose range for depression (mg)	
Amoxapine	100-600	
Maprotiline	25-225	
Mianserin	30-90	

Mianserin and Amoxapine are Often classed as Tricyclic Anti-depressants and grouped with secondary amines

- Their onset of action is delayed by seven to fourteen days. It is usual practice to start on low doses which are gradually increased until the patient is stable. Patients are advised not to stop taking suddenly due to the risk of withdrawal symptoms;
- They are more likely to be discontinued than SSRIs due to their side-effects. They are also fatal in over-dose;
- They are contra-indicated in patients with cardiac defects due to their quinidine-like effects and prolongation of the QT interval. They also have a relatively high seizurogengenicity;
- May be preferred to SSRIs where sedation is required although this varies from one TCA to another (Feighner 1999).

Table 2. Tricyclic anti-depressant side effects (BNF 2016)

Pathway	Effect
Adrenergic alpha-re- ceptor antagonism	Orthostatic hypotension
Direct membrane effects	Arrhythmia, Tachycardia
Histamine H1 re ceptor antagonism	Sedation, Weight gain
Muscarinic M1 receptor antagonism	Anti-cholinergic symptoms - dry mouth, dry eyes, blurred vision, constipation, confusion, drowsiness, sedation, urinary retention
Serotonin 5-HT2 re- ceptor antagonism	Weight gain

Serotonin Syndrome - Involves excessive central and peripheral serotoninergic activity caused by a sudden dose increase, the addition of another serotoninergic drug or the replacement of one for another without an appropriate wash-out period in between. Risk of occurrence is more common with SSRIs than with TCAs and the combination of SSRIs with MAOIs is contraindicated (BNF 2016).

Selective Serotonin Reuptake Inhibitors (SSRIs)

Mechanism of action

Inhibit the neuronal re-uptake of serotonin by specifically binding to 5-HT receptors within the synapses. Their effects on noradrenaline are minimal (BNF 2016).

Table 3. Selective Serotonin Reuptake Inhibitors andtheir dose ranges (BNF 2016)

Common Examples	Adult daily dose range for depression (mg)
Citalopram	20-40
Escitalopram	10-20
Fluoxetine	20-60
Fluvoxamine	50-300
Paroxetine	20-50
Sertraline	25-200

- Like the TCAs, their onset of action is also delayed by seven to fourteen days;
- In comparison to TCAs, they are better tolerated, safer in patients with cardiac defects, safe in overdosageand have low seizurogenicity;
- May be preferred to TCAs due to less frequent and less severe side-effects (less weight gain, no anticholinergic side-effects) (Feighner 1999).

Discontinuation syndrome is more common with SSRIs than TCAs – the most common symptoms manifest as headaches, electric shock sensations in the head, neck and spine, influenza-like symptoms, sweating, tinnitus, paraesthesia, fatigue, anxiety and dizziness. When stopping an SSRI, it is common practice to switch to a drug like Fluoxetine that has a long half-life and is metabolised to an active metabolite, in order to reduce the risk of this happening (BNF 2016).

Table 4. Selective Serotonin Reuptake Inhibitor sideeffects (BNF 2016)

Gastro-intestinal symptoms – abdominal pain, constipation, diarrhoea, dyspepsia, nausea, vomiting Sexual dysfunction – anovulation, amenorrhoea, decreased libido and/or sexual arousal, galactorrhoea Syndrome of Inappropriate Anti-Diuretic Hormone Secretion (SIADH) hyponatraemia manifesting as confusion, drowsiness, dizziness, seizures

Noradrenaline Reuptake Inhibitors (NRIs or NERIs) Mechanism of action

Inhibit the re-uptake of the neurotransmitters norepinephrine (noradrenaline) and epinephrine (adrenaline) by blocking the action of the norepinephrine transporter, which leads to increased extracellular concentrations of the two neurotransmitters.(BNF 2016)

 Table 5. Noradrenaline Reuptake Inhibitors and their dose ranges

Common Examples	Adult daily dose range for depression (mg)	
Atomoxetine ^g	/	
Reboxetine	8-12	
Atomoxetine is Licensed for use in Attention Deficit		

Atomoxetine is Licensed for use in Attention Deficit Hyperactivity Disorder (ADHD). It is not efficacious in clinically significant depression, however may improve global cognitive performance and daytime sleepiness (Weintraub 2010)

Table 6. Noradrenaline Reuptake Inhibitor side effects(BNF 2016)

Drug	Effect
Atomoxetine	Abdominal pain, anorexia, dry mouth, dyspepsia, constipation, flatulence, nausea, taste disturbances, vomiting
	Increased blood pressure, palpita- tions, tachycardia
Reboxetine	Constipation, dizziness, dry mouth, impaired visual accommodation, urinary retention Tachycardia, postural hypotension.
	vasodilation

Serotonin-Noradrenaline Reuptake Inhibitors (SNRIs) Mechanism of action

Inhibit the neuronal re-uptake of serotonin and noradrenaline at neuronal ends, thereby increasing both levels within the synapse.

Table 7.	Serotonin-Noradrenaline	Reuptake	Inhibitors
and their of	dose ranges.(BNF 2016)	_	

Common Examples	Adult daily dose range for depression (mg)
Duloxetine	30-120
Venlafaxine	75-375

 Table 8.
 Serotonin-Noradrenaline
 Reuptake
 Inhibitor

 side effects (BNF 2016)

Drug	Effect
Duloxetine	Constipation, Decreased appetite, Diar- rhoea, Dry mouth, Nausea, Vomiting,
	Somnolence, Headache, Dizziness, Insomnia, Fatigue, Sweating, Erectile dysfunction
Venlafaxine	hypertension, headache, dizziness, nau- sea, dry mouth, constipation, abnormal ejaculation, impotence, insomnia, somnolence, nervousness, sweating

Duloxetine is also commonly used to control diabetic neuropathy and stress urinary incontinence Due to higher noradrenaline activity, hypertension is more

common with Venlafaxine than with TCAs and SSRIs

 Venlafaxine's effects are initiated quicker than other anti-depressants. This may be due to its acute onset of down-regulation of beta-adrenergic receptors (Feighner 1999).

Noradrenaline – Dopamine Reuptake Inhibitors (NDRIs) Mechanism of action

Inhibit the re-uptake of the neurotransmitters norepinephrine anddopamine by blocking the action of the norepinephrine transporter and the dopamine transporter, respectively (BNF 2016).

Table 9. Noradrenaline-Dopamine Reuptake Inhibitor Bupropion

Common Examples	Adult daily dose range for depression (mg)
Bupropion	/

Bupropion is Marketed as an aid to smoking cessation, however use in depression may be considered instead of SSRIs where Syndrome of inappropriate antidiuretic hormone secretion is a problem (BNF 2016)

 Table 10. Noradrenaline-Dopamine Reuptake Inhibitor

 side effects (BNF 2016)

agitation, anxiety, dizziness, dry mouth, gastro-intestinal disturbances, insomnia, sweating, taste disturbances, tremor

Monoamine Oxidase Inhibitors (MAOIs)

Mechanism of action

Inhibit the enzyme monoamine oxidase from removing the neurotransmitters norepinephrine, serotonin and dopamine from the brain, resulting in their accumulation.

They are in turn divided into selective and non-selective MAOIs.

Table 11. Monoamine	Oxidase	Inhibitors	and	their	dose
ranges (BNF 2016)					

Common Examples	Adult daily dose range for depression (mg)						
Non-Selective Irreversible MAOIs							
Phenelezine	15-90						
Tranylcypromine	10-30						
Isocarboxazid	30-60						
Selective Reversible MAOIs (Type A)							
Moclobemide	150-600						
Selective MAOIs (Type E	3)						
Rasagaline	/						
Selegiline	/						

Selegiline and Rasagaline are used for the treatment of Parkinson's Disease rather than depression, due to their selective effect on dopaminergic neurotransmission

- MAOIs are used much less frequently than SSRIs and TCAs due to their significant effect on the digestive system and their tendency to interact with other drugs;
- In inhibiting the enzyme monoamine oxidase, the non-selective MAOIs inhibit the breakdown of tyramine which is an amino acid responsible for the regulation of blood pressure; the higher the levels, the greater the blood pressure. The consumption of tyramine-containing foods like yeast, red wine and aged cheese thereby result in its accumulation and a possible dangerous rise in blood pressure. Monoamine oxidase takes several weeks to be replaced thereby the danger of such an interaction persists for up to two weeks following discontinuation of the MAOI;

- They are contra-indicated for use alongside SSRIs due to the risk of triggering the Serotonin-Syndrome
- Phobic patients and depressed patients with atypical, hypochondriacal or hysterical features are said to respond best to MAOIs. They may also be used in the treatment of panic disorder with agoraphobia, social phobia, Post Traumatic Stress Disorder, borderline personality disorder and bipolar depression (BNF 2016)

Drug	Classification	Mechanism of action	Dose range (mg)	Common side effects	Notes
Mirtazapine (BNF 2016, Feighner 1999)	Noradrenergic and specific Serotoninergic Anti- Depressant (NaSSA)	Antagonises the presynaptic alpha ₂ - adrenoreceptor and serotonin receptor subtypes 5 -HT _{2A} , 5 - HT _{2C} and 5 -HT ₃ to increase central noradrenergic and serotoninergic neurotransmission	15-45	constipation, dizziness, drowsiness, dry mouth, increased appetite, somnolence, weight gain	May act more rapidly than other anti- depressants and causes less of the side-effects that are common to TCAs and SSRIs. It however has a significant anti- histaminic effect
Trazodone (BNF 2016, Feighner 1999, Fagiolini 2010)	Serotonin Antagonist and Re-uptake Inhibitor (SARI)	Antagonises all 5-HT receptor sites except 5- HT_{1A} , where it acts as a partial agonist. It also simultaneously (weakly) inhibits serotonin transporters (SERT)	150-600	Blurred vision, drowsiness, dizziness, dry mouth, fatigue, headache, nausea, nervousness, priapism	It is used particularly where sedation is required due to its hypnotic and anxiolytic effects
Nefazodone (BNF 2016m, Feighner 1999)	SARI			Sedation, impaired concentration, lethargy	Its lack of antihistaminic and anticholinergic activity improves tolerance and safety
Tianeptine (BNF 2016)	Selective Serotonin Reuptake Enhancer (SSRE)	Increases the uptake of serotonin within synapses. It is not known how this results in relieving depression but theories include modulation of glutamatergic transmission and its agonist effects on mu- opiate receptors	12-36	Dizziness, drowsiness, dry mouth, constipation, headache, insomnia	Lacks cardiovascular, anti-cholinergic and sedativeadverse effects and has a quicker onset of action to traditional anti-depressants
Tryptophan (BNF 2016)	Essential Amino Acid	Converted into serotonin itself following reactions of condensation, reductive decarboxylation and catalysis	6000- 12,000	Dizziness, drowsiness, dry mouth, headache, loss of appetite, nausea	May be obtained from protein-based dietary sources or as a synthetic supplement
Agomelatine (BNF 2016, Manikandan 2010)	Melatonergic Anti- Depressant	Agonises melatonergic MT_1 and MT_2 receptors and antagonises the serotonin $5HT_{2C}$ receptor	25-50	Abdominal pain, constipation, diarrhoea, nausea, vomiting Raised liver enzymes	No dosage tapering required on treatment discontinuation

Table 13. Atypical anti-depressants and other classes

Table 12. Monoamine Oxidase Inhibitor side effects(BNF 2016)

Dizziness, Headache, Postural Hypotension, weight gain, sleep disturbances, sexual dysfunction

Atypical anti-depressants and other classes

See Table 13.

Conclusion

The efficacy of anti-depressants is similar between classes, despite their different mechanisms of action. The choice is therefore based on the side-effects to be avoided. There is no one ideal drug capable of exerting its therapeutic effects without any adverse effects. Increasing knowledge of what exactly causes depression will enable researchers not only to create more effective antidepressants rationally but also to understand the limitations of existing drugs (Feighner 1999).

Acknowledgements: None.

Conflict of interest: None to declare.

Contribution of individual authors:

Mark Agius devised the project and supervised it. Hannah Bonnici drafted the text.

References

- 1. Azzopardi LM: Mood disorders. Lecture notes in pharmacy practice. London: Pharmaceutical Press, 2010; pp157-158.
- 2. Fekadu N, Shibeshi W, Engidawork E: Major Depressive Disorder: Pathophysiology and Clinical Management. J Depress Anxiety 2016; 6:255.
- 3. NHS Dorset Clinical Commissioning Group. Safety Bulletin: Dosulepin prescribing, 2016.
- 4. Joint Formulary Committee. British National Formulary. 72nd ed. UK: BMJ Publishing Group, 2016-2017.
- 5. Feighner JP: Mechanism of action of antidepressant medications. J Clin Psychiatry 1999; 60(S4):4-11.
- 6. Weintraub D, et al. Atomoxetine for depression and other neuropsychiatric symptoms in Parkinson disease. Neurology 2010; 75:448–455.
- 7. Fagiolini A et al.: Rediscovering Trazodone for the Treatment of Major Depressive Disorder. CNS Drugs 2012; 26:1033–1049.
- 8. Manikandan S: Agomelatine: A novel melatonergic antidepressant. J Pharmacol Pharmacother 2010; 1:122–123.

Correspondence: Mark Agius, MD Clare College Cambridge, University of Cambridge Cambridge, UK E-mail: ma393@cam.ac.uk