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SUMMARY 
Efforts to disclose the mechanisms of transcranial therapeutic electro-magnetic fields (EMF) acting on the brain's cells (Marino,

Kibleur) and recently immune cells (Gülöksüz) meet unsolved physiological details of blood vessels, exclusively arterial vasomotion

or the non-glial-related former g(lia)-lymphatic flow (Iliff; Liu DX) - now replaced by an astrocytic AQP4-pipeline cooling the brain 

(Nakada 2014). Here within the convergent dyn4TAM-framework, which had suggested the first mast cell behavioral experiment 

(Fitzpatrick & Morrow 2017), three intertwined physiological concepts are contributed: A) “autocrinicity” – how flushed, thus 

absent, autocrine signals integrate external fluidics into cellular computations e.g. on motility: EMFs could increase such absences 

by targeting e.g. dipole-cytokines; B) a new concept of the arterial wall based on a tangible interpretation of the coronal histology of 

all arteries as a co-axial pulse-dampening engine (Treviranus 2012). In the brain this engine might provide the quickest cerebral

outflow via the Cerebral IntraMUral Reverse Arterial Flow (Treviranus 2018b), while transmitting further forces acting upstream to 

the paravascular spaces; C) some key roles for mast cells in neuro-psychiatry (Silver & Curley 2013) and their interactive lymphatic

and non-luminal vascular routes to the brain dictated by peripheral imprinting as to destiny (Csaba 1987) and destination 

(Treviranus 2013). Within the skull they might advance against para-arterial upstream currents. 

Some known causal mediators of the effects of transcranially applied EFMs and puzzling results are then put tentatively in 

perspective with the above “tangible” models, e.g. by aligning probable induced currents with arterial segments or the new direct

meningeal-calvario-myeloid channels. 

Results: The case for a role of mast cells and diverse flows in transcranial electromagnetic brain therapy seems promising. 
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*  *  *  *  *  

INTRODUCTION

Those attained by a unipolar major depression epi-

sode (MDD) as adolescents face a nearly 20% risk to 

fail treatments and remain in MDD for half their life-

time constituting 1% of the population (Zorumski 2015). 

As far as response and short-term effects are concerned, 

repetitive transcranial magnetic stimulation (rTMS) 

especially with H1-coils (Gellersen & Kedzior 2019) 

have become non inferior to tACS (Leggett 2015). 

Depressions respond twice as well to alternating-current 

electro-convulsion (tACS) as to conservative therapies. 

Electro-magnetic field (EMF)-effects on the brain achie-

ved by chemical and meanwhile non-convulsive thera-

pies (Zuo 2018, Akbarnejad 2018, Gazdag & Ungvari 

2019) reveal their immune (Pozzi 2018) and occasio-

nally harming mechanisms slowly (Marino 2016, Singh 

& Kar 2017, Kibleur & David 2018). 

Here hypotheses add topics this speculative field: 1.) 

autocrinicity as integration of external fluidics through 

flushed and thus absent signals into cellular decisions 

e.g. in motility: EMFs could increases such absences by 

targeting e.g. dipole-cytokines; 2.) non-canonical migra-

tory routes of mast cells MCs to the brain (Pavlov 

2018); 3.) contradictory (Springer 2017) key roles for 

MCs in psychiatry. These are generated from the con-

vergent dyn4TAM-framework, which already suggested 

the first behavioral MC experiment (see Treviranus 

2018a, pp. S 621-2; Fitzpatrick & Morrow 2017) stop-

ping rodent sign-tracking by interfering with thalamic 

MCs within the first cortico-thalamo-subcortico-cortical 

circuit (CSTC).  

The decreased excitability after continuous trains at 

5Hz (Huang 2017) maybe reflects MC exhaustion. A 

likely site of relevant encounters between transcranial 

EMFs and the above putative processes include the 

“para”- arterial Virchow-Robin Spaces (VRSs), where 

MCs possibly advance counter-current along the adven-

titia (as granulocytes do intraluminally; Lyck & Engel-

hardt 2012), while this arterial VRS could be modulated 

by the parallel but mostly disconnected and acellular 

arterial intramural flow (related to pulse dampening). 

Through markers this astonishing intramural route sho-

wed up as the (hence also electrically) quickest “lym-

phatic” exit from the brain (Bradbury & Cserr 1974-84, 

Carare 2008). Here (3.2) it is explained via its bio-

mechanics as read from histology (CIMURAF; Trevi-

ranus 2018b), whereby its reverse vasomotion against 

pulses could also induce a reverse flow in VRSs. 

Electrohydrodynamics, vectorial alignment,  

and “ecological autocrinicity” 

Only matter, electrons, but also ions or molecules 

function as charge carriers. “Drift velocity” becomes the 

product of obstructed mobility and EMF (Grimnes & 
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Martinsen 2014). Electro-kinetics require supercompu-

ting (Götz 2010), but the low velocity of solute simply 

adds to the carriers’ drift velocity. The EMF-generated 

brain currents between two electrodes between alter-

native paths thus pass in proportion to their con-

ductances: notably along arteries’ and vein’s VRSs and 

along the said reverse intramural flow. 

Electromagnetic therapy and its puzzling  

effects of frequency and alignment 

In early studies applying rTMS scores of major de-

pression (MDD) and perfusion varied with personalized 

frequencies at 20 or 1 Hz (Speer 2000): With 20 Hz 

applied at the dorsolateral prefrontal cortex (dlPFC) key 

affective centers and cortical areas (compatible with the 

medial three CSTCs) received more blood and the 

subgenual anterior cingulate cortex (sgACC; where 

MDD concentrates neuronal loss, Meier 2016), received 

less. Applied close to cortex rTMS induced distant the-

rapeutic changes involving the sgACC and the default 

mode network, while surprisingly the executive control 

network (ECN) remained spared (Philip at al 2018). 

Through an occipital to left fronto-parietal long-range 

effect tACS too changed the correlation between such 

networks (Cabral-Calderin 2016), while antagonistically 

resonating with local slow (possibly vasomotive) fluc-

tuations. The incisive accelerated ITB-rTMS rapidly 

showed improved integration with remote modules and 

cognitive parcing by complexity (Caeyenbergs 2019): 

maybe through thalamic cortico-cortical facilitation 

(Collins 2018). 

ELECTROMAGNETIC NEUROPSYCHIATRY 

WORKS - BUT HOW? 

Convulsive tACS and alternatives interactively chan-

ge neurogenesis, angiogenesis, the glia, the hypothala-

mic-pituitary-adrenal (HPA) axis, and neurotrophic factor 

levels (Rotheneichner 2014). 

Between analogies and fluctuations 

Through rTMS the dlPFC seems to rebalance lasting 

“homeostatic plasticity” (Turrigiano 2007, 2017). High 

activity potentiates positive (LTP), low activity negative 

synaptic learning (LTD) through unsupervised feedback 

via presynaptic and postsynaptic molecules like tumor 

necrosis factor  (TNF- ) Under rTMS “low-frequency 

leads to LTD, high-frequency elicits LTP ( 20 Hz)” 

while it also stimulates innumerable underlying 1st and 

2nd order causes. Direct current stimulation (tDCS) 

instead paused for around 10 minutes, results in motor-

effects opposing those of a previous priming in sense, 

while neurophysiological effects hardly survive one 

hour (Karabanov 2015). On the chemical side rTMS 

close to the dlPFC increased its -aminobutyric acid 

(Levitt 2019). Such processes could as well be com-

pensatory for a subcortical (Zuo 2019) cortico-cortical 

(Collins 2018) disturbances. While the hippocampi (HC) 

enlarge, favoring plasticity by tACS, it remains obscure 

despite modeling (Dokos 2013), how this comes about 

(Oltedal 2017, 2018) - even in peripheral nerves (Wang 

2018).  

Alternative tDCS (Dedoncker 2016) and rTMS (Se-

rafini 2015) approach the efficacy of cumbersome con-

vulsive tACS. The innovative “variable phase” tACS eli-

citing phased and traveling effects (Alekseichuk 2019) 

manipulates “resonances”, reflecting statistically measu-

red correlations which are actually blind to dimensio-

nalities from e.g. CSTCs (Treviranus 2018a), in which 

tissue flows acquire weight, as reflected by signals of 

diffuse tensor imaging (MRT-DTI; Matsumae 2017, 

Sepehrband 2019, Dokos 2013) (Table 1). 

Ecological autocrinicity 

Only a few results (Silletti 1998, Doganer 2016) sup-

port a concept (beyond sensitivity to shear), that cells 

would be advantaged by autocrine signals flushed away 

by ecologically patterned and thus meaningful changes 

in external fluidics. Such an e.g. asymmetrical pattern of 

absences of signals (Lemmon 2016) would be integrated 

into cellular cybernetics and hereby e. g. modulate move-

ment. A candidate molecule is adrenomedullin effecting 

motility (Zudaire 2006) and MC-degranulation (Lv 2018). 

Induced EMFs conceivingly could remove autocrine 

signals from the uniquely immature and long-lived MCs 

while these travel (putatively) along cerebral arteries to 

where they mature and settle. While they guard the 

blood-brain-barrier (BBB) as key drivers of immuno-

logy, the intrusion of deviant MCs into the brain (where 

they activate macrophages which only once migrate to 

the brain (Ginhoux 2010)) makes them an important 

therapeutic target (Silver & Curley 2013, Treviranus 

2018a). Extracellular microvesicles (György 2011) may 

soon qualify as the most interesting of such autocrine 

signals (Chen 2017). 

PERIARTERIAL AND CEREBRAL 

INTRAMURAL FLOW AND VASOMOTION 

The glymphatic enthusiasm revised 

Interest in the interstitial fluid (ISF), which takes a 

20-100% larger part of brain´s water than blood or CSF 

led to the “glymphatic” theory (Iliff 2012) which erro-

neously conceived a flush of the parenchyma by water 

drawn in by AQP4-channels from the «para»-vascular 

Virchow-Robin-Spaces (VRSs) expelling the parenchy-

ma’s ISF via venous VRSs back to CFS and as deep cer-

vical lymph (Wang & Casley-Smith 1989). This “g(lia)-

lymphatic” account was recently corrected by an inverse 

one, whereby astrocytes (ACs) provide a pipeline which 

circumvents the sealed BBB and no Starling-mechanism 

builds up (Hladky & Barand 2016). Few issues remain: a) 

the direction of flows (Bakker 2019) in the VRSs; b) the 

energetic origin of pressure gradients; c) the role of 

pressure pulsations; and d) the now contradicted (Nakada 

& Kwee 2019) contribution of the water-selective channels  
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Table 1. Putative Mechanisms of Transcranial Electro-Magnetic Therapies 

Theory Mechanism R, G Ref. 

“BCM” Post-/Pre-Synaptic learning  Cooper 2012 

BCM in rTMS etc. Analogy  Karabanov 2015 

Fluid PNEI (tACS) TRP-KYN, TDO/IDO R Gülöksüz 2015 

PICs like TNF-  serum R Joshi 2016 

P/AIC TNF- , IL-5  serum R Rotter 2013  

Serotonin 5-HT ? binding to 5HT2AR  Yatham 2010 

BDNF serum  plasma R Polyakova 2015 

VEGF serum , mTOR Elfving 2012  Minelli 2014  

HC cell proliferation:    

 (rat)                      -  Nakamura 2013 

(( )) adult human / primates Natural development - Sorrells 2018 

 rat Antidepressant drug, 0 ECS +A Malberg 2000 

*Neural Stem Cell (SGZ)  (-)A Segi-Nishida 2008 

*Neural Progenitor Cell +/- NStC &  NPG  Encinas 2006 

Mossy fiber sprouting (less, if ketamine)  Chen 2001  

DA to Mossy fiber  Kobayashi 2017 

Human HC volume R Oltedal 2018, Powell 2017 

Human DG volume R Nuninga 2019 s 

HC volume No ECT, Escitalopram R G Powell 2017  

HC, AMYvolume  R Tendolkar 2013 

HC, AMYvolume  R Nordanskog 2103 

Insula volume R Van Eijndhoven 2016 

Any neurogenesis ECS R Alemu 2019 

HC R ant. Perfusion R Leaver 2019 

dmTHAL  ? CSTC R Leaver 2019 

Glucose uptake  PFC   Henry 2001 

Spontan-fluctuation CIMURAF ?  Cabral-Calderin 2016 

Vasomotion CIMURAF ? This project 

Autocrinicity   This project 

Mast cells   This project 

MC disorders   Georgin-Lavialle 2016 

In Italics: Sources referring to Antidepressant drugs or Hypotheses followed by the author (e.g. Cerebral Intra MURal Flow).

Abbreviations: CSTC: Cortico-subcortico-thalamo-cortical circuit;   PIC pro-inflammatory cytokine;   TRP-KYN, TDO/IDO: 

Tryptophan-Kynurenine metabolism through TDO-/IDO-enzymes;   mTOR: mechanistic Target of Rapamycin;    

dmTHAL: dorsomedial thalamus;   ECT: Electro-Convulsive Therapy;   TNF- : tumor necrosis factor  R: clinical response;    

G: genetical evidence;   0/(-) A: chemical Antidepressants for comparison (Italics): No or negative effect

(aquaporin-4; AQP4), since these are expressed inside the 

BBB and not dedicated to water exchanges with the 

outside. Astrocytes (ACs) use AQP-4 at the podocytes 

to acquire H20 from just above the cortex (Suzuki 2017) 

for the AC’s own hydration and again to expel H20 into 

the VRS. During heat-alarm the latter shut down to 

hydrate ACs (Nakada 2014). There is no lymphatic 

“flush” like in other tissues.  

Wondersome intra- and extramural  

“peri”-arterial flows 

Following the clearance of Abeta (Carare 2008, 

Okamoto 2012, Ball 2010), from also cortical interstitial 

brain fluid (Bakker 2016), a wondersome rapid and 

reverse marginal “peri”-vascular intramural route had 

shown up in rodents (H.F. Cserr 1974-1984; Szenti-

stvanyi 1984). An application of peripheral arterial 

reflected pulse waves to this process (Schley 2006, 

Diem 2016, 2017) lacked the required reflection sur-

faces (Coloma 2019) and valve-like macro-nano-links.  

The Cerebral IntraMUral Reverse Arterial Flow-mo-

del (CIMURAF; Treviranus 2018b) was derived from a 

previous Co-axial Arterial Wall Engine (CAWE) inter-

pretation of the aortic wall, proposed originally (Trevi-

ranus 2012) to explain its exceptional biomechanical 

resistive persistence.  

The Co-axial Aortic-Wall-Engine:  

a smart macro-engine? 

The CAWE-model is readily verified by coronal his-

tology, but requires scientific testing. Since at least mol-

luscs’ arterial vascular smooth muscle cells (VSMCs) do 

not (usually) “hold hands”, but in the tunica media at-

tach obliquely to co-axial tubes made of elastic laminas 
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Figure 1. How arteries were seen: The two blueprints of the textbook author anatomist A. Benninghoff (1928) were 

both wrong. The helical version accepted by Bakker (2015) was refuted by O’Connell (2008). The correct blue-print by 

R.V. Krstic (1991) went unnoticed. The first insert shows the Co-Axial-Wall-Engine-model (Treviranus 2012) 

starting with the lamina interna (López-Guimet 2017), 

which are separated by pressurized watery inter-lamellar 

compartments (ILCs; Carew 1968, Davis 1993). The 

human aorta is made out of more than 60 of such tubes 

stuck inside one another. Also, the sense of this obli-

quity alternates radially from tube to tube. Hereby most 

(~3/4) of the VSMCs more tangential action does not 

result in pressurizing by radial contraction (~1/4), but in 

small co-axial rotations (<10°) of the tubes, which in the 

aorta e.g. possibly follow the heart rate, but elsewhere 

might be related to the several-fold slower «vasomo-

tion» (see below). These torsional movements, induced 

by VSMC contraction, extend anti-parallel elastin fibers, 

which after relaxation restore the system to baseline, 

whereby a simple harmonic oscillator is built. This ne-

glected co-axial cylinder blueprint of arteries (Hayman 

2016) is more hidden in other arteries (Hill 2016, 

Hinderer 2015, Eoh 2017) (Figure 1). 

At the same time such neurally induced segment by 

its alternating axial momenta at each ILC - like a 

«christmas cracker» - causes two slight hyperboloid 

circular embayments (HCEs). When such a segment 

moves upstream to dampen the pulse (by appropriate 

nervous instigation-relaxation of the VSCMs) coupled 

HCEs will resolve and renew themselves over a tra-

veling distance. This will drive a “multilayered cushion” 

with a bow wave and a stern suctioning end. Within 

every ILC a) incoming contrary arterial pulses from 

heart-like pumps are dampened by working against the 

VSMCs´ torque (the primary evolutionary scope) and b) 

water is drawn into the ILCs of the segment – the 

fenestrations becoming radially aligned by torsion in 

order to refill them, and c) CIMURAF is accelerated in 

its reverse upstream direction behind the stern HCE, the 

radial outflow being shut again. This is peculiar to the 

brain where the radial lamellar fenestrations are twice as 

numerous, albeit obstructed by myo-endothelial-cell pro-

trusions (Sandow 2009). CIMURAF is steered by four 

vasomotive nerve systems (Ainslie 2014, Taktakishvili 

2010, Roloff 2016), and stronger during sleep (Xie 

2013) (Figure 2). 

Heat and not self-erasing impacts  

of electromagnetic fields on arteries 

Although arteries, being larger and less complex per 

volume, can be expected to be «more aligned» to the 

curved and changing EMFs, the problem of complex and  
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Figure 2. The Co-Axial-Wall-Engine-model with two interlaminar spaces with Vascular Smooth Muscle Cells axially 

twisting three laminar tubes against each other in a leftward vs. rightward sense creating a sliding pressured chamber 

between two zones between hyperbolic embayments. The shutter-mechanism effectively shuts down the radial tortuous 

exit towards the VRS as shown by sliding two overlaid copies of fenestrated laminae (image from Campbell & Roach 

1981). Mollusc, reptile and mammals all show the exact same aortic blueprint (Gosline & Shadwick 1982) 

opposite self-erasing effects of EMFs persists (see 

Between analogies and fluctuations). The effects of 

alignment followed during biphasic stimulation of cor-

tical interneurons (Wang 2018, Sommer 2018) hardly 

reflect the tissue’s neuronal, axonal or subcellular in-

tricacies.

EFMs probably also pass through ionic gap junc-

tions connecting same and different mural cells. But 

muscle contractions nevertheless require neuromuscular 

junctions (Kean 1974, La 2019, Kotecha & Neild 1988) 

- apart from vague nano-electro-sensitivity (Suzuki 2017, 

Oosawa 2018).  

The VSMCs providing CIMURAF therefore are 

only allowed to perform the coronal obliquely tangential 

contractions following the CAWE-engine’s architecture. 

How EFMs from diverse angles will affect VSMC-

contractions remains understudied. 

After the substitution of the “glymphatic” paradigm 

(see The glymphatic enthusiasm revised) the degree to 

which ACs might react towards heating (Nakada 2014) 

by the EMF-waves might move center-stage since 5/6 of 

brain’s perfusion remains unexplained. MCs have at 

least one highly temperature-sensitive proton channel 

(Kuno 1979), which is very present in microglia and 

stroke (Wu 2012). Both K+-channels KCC2 and NKCC, 

determining inhibitory transmission MDD or epilepsy 

via intracellular Cl- , decrease the latter in proportion to 

temperature (Hartmann & Nothwang 2011). About 

brains’ temperature physiology despite clinical ques-

tions little exists (Wang 2014): The BBB becomes highly 

permeable upon heating up to fever and just beyond 

neurons perish. Axons instead concentrate the heat ge-

neration capacities with a role in neurotransmission. 

Intramural muscles drive the para-vascular 

flow in Virchow-Robin spaces 

The VRSs remained puzzling since their first descrip-

tion (His & Bastian 1867). Today their waste-flushing 

function (Di Marco 2015) stays crucial and pluri-seg-

mental MRI 4D-velocimetry shows its deterioration along 

the Alzheimer spectrum (Rivera-Rivera 2016).  
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CIMURAF-engine and reverse acceleration

in the Virchow-Robin-Spaces 

Since the lamina interna is water-tight and the twis-

ting dynamic of the wall opens the shutters in the 

segment right behind the bow wave, while the stern 

suction accelerates the CIMURAF within the normally 

radially closed ILCs, a compensatory similarly counter-

current flow is predicted for the VRS. When the segment 

travels upstream the opportunities for radial influx first 

shortly increase by the initial segment up to compen-

sation, but then subsides (while behind the stern HCE of 

the ILCs the radial exits are again obstructed). Thus there 

is always more radial influx into the wall upstream than 

downstream and this gradient is reinforced by the 

traveling speed of the segment, while the VSMCs keep 

working against the cardiac muscle in order to dampen 

the destabilizing effects of the pulse on the wall and the 

tissue homeostasis. This account is reversed if one assu-

mes that the shutters would close in the segments, but that 

would destabilize the wall over the relaxed parts.  

CSF-tracers are enriched up to 40-fold in the circle 

of Willis, (Bradbury 1981) which in fact cannot have 

sliding torsional segments and therefore could testify for 

the capacity of CIMURAF. 

Vasomotion 

The CAWE-blueprint concerning all arteries could 

be related to the slower vasomotion (VM) - for which 

only approximative molecular processes are put forward 

(Cole 2019). VM denotes rhythmic oscillations of about 

10/min in the diameter of even isolated arteries and 

arterioles, which – in a way maybe related the origin of 

the BOLD-signal of MRT – seem to be neuronally 

entrained by energetic needs of cortical neuronal acti-

vities (Mateo 2017). VM, as CAWE/CIMURAF, seems 

to be unique for arteries. The wall of veins do not show 

this blueprint, and only games of nature like the original 

bat wing (Wharton 1852) show entirely different 

oscillations (Liu 2014, Scholbach 2016, Arpi 2018). 

Thus a “review” (Van Helden & Imtiaz 2019) focussed 

entirely on lymphatics.  

VM can be influenced by many factors and corre-

lates with cycling of force-generating myosin cross-

bridges in VSMCs and their molecular and membrane 

potential context. The ensuing «flowmotion» reflects 

environmental physical and local influences from VSMC, 

paracrine ECs, perivascular fat (Nava & Llorens 

2016), and from other cells. Where nitric oxide (NO) is 

low and availability and sensitivity to thromboxane 

(TBX) are high TBX elicits strong VM (Horváth et al. 

2010). MCs again can be strong producers of TBX 

(Macchia et al. 1995).  

IMPRINTABLE MAST CELLS: 

UNDERRATED AND MIGHTY 

One-cell organisms can be induced by a single 

imprinting signal to respond lastingly in another way. 

György Csaba extended this pioneering research with 

early glandular hormones to similarly imprintable MCs 

(Csaba 1987, 2012, 2014). MC are complex hubs 

(Niarakis 2014). They guard interfaces of tissues, 

varying their complexity. They respond to over 200 

often combinatorial chemical, often psycho-social, 

neural, or physical, i.e. receptor- or surface-mechanical, 

hot-cold-, and electrical and/or fluidic inputs. These 

may doubly imprint them as to a) their migratory 

destination in the CNS through selective molecular 

pairing between cell and paths still immature cells, and 

b) as to their mature persistent destiny. Following signal 

integrations MCs respond through a dozen release 

modes. Rat peritoneal MCs e.g. one hour after injection 

were close to thalamic blood vessels, among 90% 

previous residents, and deep to the basal lamina, in nests 

of glial processes (Silverman 2000). MCs “orchestrate” 

fellow immunocytes early in response; but they can 

survive for years as guardians of barriers and homeo-

stasis (Table 2). 

The mast cell - “lymphatic cauldron” relations 

Only recently meningeal lymphatics were discovered 

(Aspelund 2015, Louveau 2015, Absinta 2017) and 

channels draining from the calvarial bone-marrow (Cai 

2019): a highly promising route for e. g. MCs to cause 

insomnia, hallucinations or hidden lesions in the cortex.  

As, often subverted, first-line defendants and later 

“orchestrators” of innate and adaptive response and as 

likely intestinal lipid uptake monitors, MCs join the 

well-isolated inflammatory cauldron of the collecting 

and thoracic lymphatics to orchestrate immune res-

ponses in lymphatic tissue and to evaluate metabolic or 

toxic signals. The lymphatic ECs in fact decisively 

interact with MCs - else obesity occurs (Pal 2017, 

Gasheva 2019). Furthermore the lymphatics are regu-

lated by autonomic peptidergic nerve signals (Ito 1989), 

which are often involved in permeability and MC 

communication. 

Hypothetical events between  

lymphatics and mast cell  

After distal challenges the, passive, lymphatic 

transport could be hastened by a plausible proximal 

neurally induced “sieving” of obstructing fluid (sigma-

1-receptor; Trujillo 2017).  

«IRF-4-dependent CD11b-+ dendritic cells» (DCs) 

control the permeability of lymphatic collecting vessel 

(Ivanov 2016) through NF- B signaling (Grumont & 

Gerondakis 2000) to their CCR7-receptors (already 

calling them into initial lymphatics; Pflicke & Sixt 

2009), and later become “embraced” by the vascular 

ECs (Teijiera 2013). Now the NF- B stems from a pre-

dominant MC/histamine/NF- B axis (Nizamutdinova 

2016), shielding the lymphatic’s transport and barrier 

functions (Kang 2009), unless by failure the perivas-

cular tissue becomes inflamed or infected (Zolla 2015). 
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Table 2. Incomplete synopsis of mast cell concepts. Mast cells are very versatile and their faculties seem to serve 

various “scopes” of which the “mechanisms” and “main proofs” are referred to leading sources 

Theory of scope Mechanism Main proof  Source 

Bioeconomical Complexity deciding 0.5 bio years old This project

Immunometabolism (Fat sensing) Masted by lymph Paul Ehrlich 1877 

Morphogenesis   Crivellato & Ribatti 2016 

Early host defence Etosis Only armed cell Möllerherm 2016  

Adaptive Immunity Lymph Pellets with PICs S. N. Abraham 2009 

Guardians of BBB PNEI  T. Theoharides 1996 

Mind modulators Ethology Molecular biology Silver & Silvermann 1996 

Meningeal  Migraine V. Dimitriadou 1997 

Gut-Brain-Axis  AutismMoura T. Theoharides 2015 

Neuropsychiatry BDNF (+) Mastocytosis etc. Moura 2011, Afrin 2015 

Oligodendrocyte Tryptase Complement 4 ? Medic 2010 

CSTC modulator Cognition Sign-tracking (rats)  Fitzpatrick & Morrow 2017 

MC degranulation Uncertainty Orient Treviranus 2018a

Imprintability:  Destiny G. Csaba 1987 

Imprintability Destination 

Author

GRS Treviranus

This project

Transgranulation   M. Wilhelm 2005 

Epigenetic changes Histone Tryptase F. Levi-Schaffer 2014 

In Italics: Sources referring to Hypotheses followed by the author 

Exploring non-canonical migratory routes the follo-

wing sequence can be imagined after “sieving” (Tre-

viranus 2013): (A) Since MCs in order to activate lymph 

nodes (Kunder 2009) produce cytokine-protecting-

pellets (CPPs, my term) which shield pro-inflammatory 

cytokines (PICs) from ultra-rapid disposal - such CPPs 

carrying TNF-  (which is also a chemokine) can be 

expected to be (B) spilled out of the lymphatics and (C) 

to attract MCs to where they happen to go. Then (D), 

occasionally a space would be created by the MC 

adjacent to a vessel and filled with CPPs, again through 

TNF- , (E) tight-junctions (TJs) could be cracked 

(Marcos-Ramiro 2014), opening (F) a path into the main 

lumen or into a VV. Thereby (G) being rolled in and 

dragged on by laminar flow CPPs could advance. When 

(H) stuck inside a VV the CPPs – restarting the rope 

trick – would attract MCs or crack the TJs. At lympho-

arterial crossings (I) MCs could switch vessels (J): a.) 

Towards the anterior cerebral circulation: lymphatic 

duct to aortic arch from below into the carotid 

“chimney” modulating the carotid, the jugular vein, and 

the vagal nerve; b.) Towards the posterior circulation: 

from the lymphatic retro-clavicular “end-curve” of the 

duct to the vertebral artery - MCs could thereby (J) 

cross-over from the lymphatics into the lumen or into a 

VV within arterial walls. Similar processes actually 

contribute to vascular pathologies e.g. in hepatic veins 

(Yamamoto 2000, Takahashi-Iwanaga 1990, Lukacs-

Kornek 2016). Adventitial MCs have been described for 

long in relation to vasospasm, dissection (Wågsäter et 

al. 2016), and atherosclerosis (Lindstedt et al. 1999) as 

well as their relation to neurogenic inflammation (Laine 

et al. 2000) in blood vessels, and lymphatics (Pal 2017). 

At the skull’s border, where the acellular intramural 

CIMURAF (Treviranus 2018b) leaves the arterial wall 

for the ethmoïds, (K) MCs could surface on the adven-

titia and enter the VRS, advancing counter-current. The 

ensuing fluidic information together with chemokines 

and apt (imprintable) pairings of the EC surface 

molecules with their own, could (L) steer them into 

specific brain areas. Such hands-on details on migratory 

paths are being sought (Martinelli 2014).  

Mast cells as related  

to electromagnetic therapies 

MC regulate many cerebral sites, but, besides their 

strong presence in the stress systems, their main 

neuropsychiatric influences stem from their meningeal 

or thalamic residency. Currents applied to rodents have 

terminated thalamo-cortical spikes and waves, and 

provided on-demand anti-epileptic activity for weeks 

(Kozák & Berényi 2017). Also do MCs produce and 

store dopamine (Rönnberg 2012). Some dysfunctions in 

Parkinson’s diseases refer to the thalamus: e. g. tremor 

to insufficient self-inhibition of the ventral intermediate 

thalamus via external dopamine (Caligiore 2019, Dirkx 

2017). Motor performances improved through rTMS 

reduced the jointly pathogenic serum IFN  and IL-17A, 

produced by striatal Th1- and Th17-cells (Idova 2012).  

Grey matter cortical changes in MDD (Harrison et 

al. 2006) or schizophrenia (Xu 2017) instead are either 

due to isolated deficits in function (ACC, lPFC, puta-

men) or structure (frontal and temporal cortex) or in 

both (ACC, insula), whereby thalamic MCs could 

destabilize function (and neurotrophic activity) at the 
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CSTCs, and meningeal MCs could functionally disturb 

or attack neurons and oligodendrocytes directly after 

intruding e. g. from arterial walls of the anterior arterial 

supply, which densely crosses the insulas. 

CONCLUSION 

The challenge to explain the most effective treat-

ment for several neuropsychiatric conditions should 

profit from incorporating not only “fluid” Psycho-

neuro-endocrino-immunology, but also the highly ver-

satile, long-lived, and mighty mast cells ascending to 

destinations and destinies within the brain from the 

lymphatics and via other non-canonical routes, possibly 

co-regulated by negative “autocrinicity”. While the blue-

print of arteries by itself calls for a comprehensive in-

vestigation it contributes to understand the regulation of 

intracerebral flows. All these are candidates as targets of 

electro-magnetic fields induced in the brain for thera-

peutic purposes. 
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